This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title \sim content=t713926090

The effect of the linking group on mesogenic properties of three-ring derivatives of p-carborane and biphenyl

Takashi Nagamine ${ }^{\text {a }}$; Adam Januszkob ${ }^{\text {b }}$; Kiminori Ohta ${ }^{\text {a }}$; Piotr Kaszynski ${ }^{\text {b }}$; Yasuyuki Endo ${ }^{a}$ ${ }^{a}$ Tohoku Pharmaceutical University, Sendai 981-8558, Japan ${ }^{\text {b }}$ Organic Materials Research Group, Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA

To cite this Article Nagamine, Takashi , Januszko, Adam, Ohta, Kiminori, Kaszynski, Piotr and Endo, Yasuyuki(2008) 'The effect of the linking group on mesogenic properties of three-ring derivatives of p-carborane and biphenyl', Liquid Crystals, 35: 7, 865 - 884
To link to this Article: DOI: 10.1080/02678290802245450
URL: http://dx.doi.org/10.1080/02678290802245450

PLEASE SCROLL DOWN FOR ARTICLE

[^0]
The effect of the linking group on mesogenic properties of three-ring derivatives of \boldsymbol{p}-carborane and biphenyl

Takashi Nagamine ${ }^{\text {a }}$, Adam Januszko ${ }^{\text {b }}$, Kiminori Ohta ${ }^{\text {a }}$, Piotr Kaszynski ${ }^{\text {b }}$ * and Yasuyuki Endo ${ }^{\text {a }}$
${ }^{a}$ Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai 981-8558, Japan; ${ }^{\text {b }}$ Organic Materials Research Group, Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA

(Received 5 May 2008; final form 3 June 2008)

Abstract

Four series of mesogenic derivatives of p-carborane (series $\mathbf{A}[0]$ and $\mathbf{A}[1]$) and their benzene analogues (series $\mathbf{B}[\mathbf{0}]$ and $\mathbf{B}[1]$) with variable linking groups \mathcal{L} were prepared and investigated for phase behaviour. The data allowed a comparison of the effect of the group \mathcal{L} on the mesophase stability as a function of the adjacent ring (carborane or benzene), the variable central ring (carborane or benzene), and the presence of an oxygen atom in the terminal chain. The results showed that substitution of carborane for a benzene ring in $\mathbf{B}[\mathbf{m}]$ depresses the clearing point by 50 K to 208 K and eliminates all smectic behaviour in $\mathbf{A}[\mathbf{m}]$. The carborane derivatives $\mathbf{A}[\mathbf{m}]$ are weakly dependent (effectiveness of $\mathcal{L}:-\mathrm{CH}=\mathrm{CHCOO}-\sim-\mathrm{COO}-\sim-\mathrm{CH}=\mathrm{CH}->-\mathrm{CH}=\mathrm{N}-\sim \mathrm{CH}_{2} \mathrm{CH}_{2}->-\mathrm{CONH}-$), whereas the benzene analogues $\mathbf{B}[\mathbf{m}]$ are strongly dependent (effectiveness of \mathcal{L} : $-\mathrm{CONH}->-\mathrm{CH}=\mathrm{CH}->-\mathrm{CH}=\mathrm{N}-\sim$ $-\mathrm{CH}=\mathrm{CHCOO}->-\mathrm{COO}->-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - on the structure of the linking group \mathcal{L}. The difference in the effectiveness of the amide group on mesophase stability $\left(\Delta T_{\mathrm{I}}=208 \mathrm{~K}\right)$ has been attributed to the stabilizing intermolecular H-bonding in $\mathbf{B}[\mathbf{m}]$, which is prevented in $\mathbf{A}[\mathbf{m}]$ by steric and electronic effects of the carborane cage on the carbonyl group.

Keywords: carborane mesogens; synthesis; structure-property analysis

1. Introduction

The structure of a classical mesogen consists of two or more rings connected by a linking group \mathcal{L} and substituted with terminal alkyl chains (1-3) (Figure 1). The linking group typically is a small fragment that has a significant impact on mesogenic properties of the compound through its conformational properties, rigidity, polarity, electronic structure and ability to form H-bonds. These effects are moderated by the nature of the rings connected by the linking group, especially by their electronic and steric properties.

Previous comparative studies for two-ring benzene derivatives (3-5) considered the effect of up to eight different linking groups \mathcal{L}, whereas for the cyclohexane-benzene (3) and cyclohexane-cyclohexane derivatives (6) the variety of the \mathcal{L} group was smaller. It was concluded that aromatic rings typically prefer unsaturated linking groups that allow for the extension of electronic conjugation, whereas the saturated cyclohexane rings are more compatible with the saturated dimethylene linker and the ester group.

Figure 1. A schematic structure of a typical calamitic mesogen.
p-Carborane (A, Figure 2) is a relatively large nearly spherical σ-aromatic inorganic cluster with fivefold rotational axes (7). Our interest in understanding the structure-property relationships in liquid crystalline derivatives of p-carborane ($8-20$) led us to investigate the impact of the linking group \mathcal{L} connected directly to the carborane fragment on mesogenic behaviour. Therefore, we focused on a series of three-ring derivatives of p-carborane $\mathbf{1 A} \mathbf{A} \mathbf{7}$ and their benzene structural analogues 1B-7B.

In this paper, the synthesis and characterisation are reported of two series of mesogenic derivatives of p-carborane ($\mathbf{A}[\mathbf{0}]$ and $\mathbf{A}[\mathbf{1]}$) and two series of their benzene analogues ($\mathbf{B}[\mathbf{0}]$ and $\mathbf{B}[1]$, Figure 2). Each

Figure 2. Molecular structures of mesogens 1-7 and structural units \mathfrak{A} and \mathcal{L}. In the structure \mathbf{A} (p-carborane) each vertex represents a BH fragment and each sphere is a carbon atom.

[^1]series consists of seven compounds containing different linking group \mathcal{L}. Analysis of the data allows for the comparison of the effectiveness of the linking group \mathcal{L} in the mesophase stabilisation in the carborane ($\mathbf{A}[\mathbf{m}]$) and benzene ($\mathbf{B}[\mathbf{m}]$) series, effectiveness of the carborane in promoting mesogenic behaviour relative to the benzene analogues and the effect of incorporation of oxygen between the terminal chain and the benzene ring in both series of mesogens \mathbf{A} and \mathbf{B}.

2. Results

Synthesis

The synthesis of liquid crystalline derivatives $\mathbf{1 - 7}$ is shown in Schemes 1-5. Esters 2[1] were obtained from carboxylic acids 8A (17) and 8B following the procedure described earlier for the synthesis of esters 2[0] (17). Reaction of acid chlorides derived from 8 with 4-pentylanilline or 4-pentyloxyaniline gave the corresponding amides 6[0] and 6[1], respectively (Scheme 1).

Esters 7[m] were obtained from alcohols 9 (Scheme 2). In addition to the benzoates 7[m], alcohol 9A was esterified with 4-pentylbicyclo[2.2.2]octane-1carboxylic and 4-pentylcyclohexanecarboxylic acids to give the corresponding esters $7 \mathrm{~A}[\mathrm{BCO}]$ and $7 \mathrm{~A}[\mathrm{CHx}]$.

The remaining compounds in the series were prepared from aldehydes $\mathbf{1 0 A}$ and $\mathbf{1 0 B}$ using typical procedures shown in Scheme 3. Thus, condensation of aldehyde $\mathbf{1 0}$ with appropriate anilines gave Schiff bases $\mathbf{4}[\mathbf{m}]$. A Horner-Emmons (21) reaction of aldehyde $\mathbf{1 0}$ gave a good yield of the corresponding ethyl E-propenoate 11, which was hydrolysed to the corresponding acid 12. The acid was converted to the corresponding acid chloride and reacted with 4pentylphenol and 4-pentyloxyphenol to give the corresponding esters $3[0]$ and $3[1]$, respectively. The Wittig reaction of aldehyde 10B with phosphorane 13[m], derived from the corresponding phosphonium salt $\mathbf{1 4}[\mathbf{m}]$, gave a mixture of E and Z isomers in approximately $1: 1$ ratio. The desired trans isomer $\mathbf{5 B}[\mathbf{m}]$ was isolated from the mixture by chromatography and crystallisation. Hydrogenation of $\mathbf{5}[\mathbf{m}]$ gave derivatives $\mathbf{1}[\mathbf{m}]$ in nearly quantitative yields.

Scheme 1. Synthesis of esters $\mathbf{2}[\mathbf{m}]$ and the corresponding amides $\mathbf{6}[\mathbf{m}]$.

Scheme 2. Synthesis of esters $7[\mathrm{~m}], 7 \mathrm{~A}[\mathbf{B C O}]$ and $\mathbf{7 A}[\mathbf{C H x}]$.

Scheme 3. Synthesis of Schiff bases $\mathbf{4}[\mathrm{m}]$, esters $\mathbf{3}[\mathrm{m}]$ and derivatives $\mathbf{1}[\mathrm{m}]$.

Scheme 4. Synthesis of olefin $\mathbf{5 A}[\mathbf{0}]$.

Scheme 5. Synthesis of olefin 5A[1].

Scheme 6. Synthesis of of carboxylic acid $\mathbf{8 A}$.

Olefin $\mathbf{5 A}[\mathrm{m}]$ could not be prepared from aldehyde 10A and phosphorane $\mathbf{1 3}[\mathbf{m}]$; under the Witting reaction conditions the aldehyde was decarbonylated. Therefore, $\mathbf{5 A}[0]$ was prepared in a three-step procedure starting with addition of a Grignard reagent derived from benzyl bromide $\mathbf{1 5 [0]}$ to aldehyde 10A (Scheme 4). The resulting alcohol $16 \mathrm{~A}[0]$ was converted to methanesulfonate $17 \mathrm{~A}[0]$, which was treated with a base (DBU) to form olefin $\mathbf{5 A}[0]$ in an overall yield of 35%.

A similar approach to the preparation of olefin $\mathbf{5 A}[1]$ using a Grignard reagent derived from 15[1] did not work well. Therefore, the preparation of olefin $\mathbf{5 A}[1]$ was accomplished by addition of a Grignard reagent prepared from 1-bromo-4-pentyloxybenzene to aldehyde 18A, which was prepared by DessMartin oxidation (22) of alcohol 9A (Scheme 5). The resulting alcohol $\mathbf{1 9 A}[1]$ was converted to $\mathbf{5 A}$ [1] by treatment with $\mathrm{MeSO}_{2} \mathrm{Cl}$ in the presence of a base.

The preparation of carboxylic acid $\mathbf{8 A}$ was reported recently (17). The known acid 8 (23) was obtained by alkylation of 4'-hydroxybiphenyl-4-carboxylic acid and subsequent hydrolysis of the resulting pentyl ester 20B (Scheme 6). Initial alkylation of the hydroxy acid in DMF using $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base gave mostly the hydroxy ester 21B and the desired ester 20B was formed as a minor product. Therefore, 21B was
separated and alkylated in the presence of NaH giving a good overall yield of ester 20B.

Aldehyde 10A was obtained directly from carborane derivative 22A (17) by reacting its lithium salt with ethyl formate (Scheme 7). Biphenyl aldehyde 10B was prepared from ester 20B by reduction with LAH followed by oxidation with PCC (Scheme 8).

The preparation of 2 -substituted ethanol 9 A was accomplished starting from carborane 22A, which was alkylated with THP-protected 2-bromoethanol (Scheme 7). The resulting derivative 23A was deprotected under mild acidic conditions to give the

Scheme 7. Synthesis of aldehyde 10A, 2-substituted ethanol 9A and derivative 23A.

Scheme 8. Synthesis of biphenyl aldehyde 10B.
substituted ethanol in 32% overall yield. The biphenyl analogue 9B was obtained from the known bromobiphenyl 24B, which was first converted into the more reactive iodide $\mathbf{2 5 B}$. The iodide was reacted with diethyl malonate under Buchwald conditions (24), under which the initially formed arylmalonate ester underwent decarboxylation to form the acetate 26B, which was isolated in 54% overall yield (Scheme 9). Reduction of 26B gave the desired alcohol 9B.

Phosphonium salts 14[0] (25) and 14[1] were prepared from benzyl halides $\mathbf{1 5 [0]}$ and 15[1] and PPh_{3} (Scheme 10). The halides were obtained from the corresponding benzyl alcohols 27[m], which were prepared from the analogous carboxylic acids by LAH reduction.

Mesogenic properties

Phase transition temperatures and enthalpies for series 1-7 are shown in Table 1 and for selected intermediates in Table 2. The phase type was assigned by comparison of microscopic textures observed using a birefractive setup with those published for reference compounds and established trends in thermodynamic stability (26-28).

In general, carborane derivatives in both series exhibit exclusively a nematic phase. The only exceptions are the derivatives 7 A with the four-atom long linking group $\mathcal{L}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OOC}-$, which show no mesogenic behavior even upon supercooling by
$30-50 \mathrm{~K}$. In contrast, the biphenyl derivatives $\mathbf{1 B} \mathbf{-}$ 7B exhibit nematic and smectic phases.

Derivatives $\mathbf{1 B}[\mathbf{0}]$ and $\mathbf{1 B}[\mathbf{1}]\left(\mathcal{L}=-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$ exhibit only a soft crystalline phase E, amides $\mathbf{6 B}[0]$ and $\mathbf{6 B}[1]$ exclusively smectic $\mathrm{A}(\mathrm{SmA})$ phases and 7B[1] ($\mathcal{L}=$ $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OOC}-$) has only a nematic phase. Other compounds exhibit rich smectic polymorphism in addition to nematic phases. Particularly interesting in this respect is Schiff base $\mathbf{4 B}[1]$. Thermal (Table 1, Figure 3) and optical analysis (Figure 4) revealed four smectic and one soft crystalline phases in addition to a nematic phase. The observed rare sequence of phases (G-F-I-C-A-N) is similar to that reported (30) for 28 (G-J-F-I-C-A-N, Figure 5), an analogue of 2B. Similarly rich polymorphism was detected in ethene derivative $\mathbf{5 B}[\mathbf{1]}(\mathcal{L}=-\mathrm{CH}=\mathrm{CH}-)$, which shows several poorly resolved transitions clustered around $250^{\circ} \mathrm{C}$.

Analysis of the data in Table 1 shows that the nematic-isotropic transition temperature, T_{NI}, for carborane derivatives $\mathbf{1 A}[\mathbf{m}]-\mathbf{5 A}[\mathbf{m}]$ weakly depends on the structure of the linking group \mathcal{L} and the average $T_{\text {NI }}$ value for the $\mathrm{m}=0$ series is $109 \pm 9^{\circ} \mathrm{C}$ and for $\mathrm{m}=1$ is $132 \pm 8^{\circ} \mathrm{C}$. This indicates that the insertion of an oxygen atom to the structure in series $\mathrm{m}=0$ results in an average increase of the T_{NI} by $22 \pm 2 \mathrm{~K}$ in series $\mathrm{m}=1$ (Figure 6). The amides 6A[0] and 6A[1] clearly stand out from this series. Their isotropic transitions are significantly lower than the average T_{NI} value (by 56 K for $\mathrm{m}=0$ and 41 K for $\mathrm{m}=1$) and the difference ΔT_{NI} between $\mathbf{6 A}[0]$ and $\mathbf{6 A}[1]$ is nearly twice bigger than for the remaining members of the series.

In contrast to carborane derivatives, isotropic transition temperatures, T_{I}, for all biphenyls $\mathbf{1 B}[\mathbf{m}]-$ $\mathbf{6 B}[\mathrm{m}]$ strongly depend on the structure of the linking group \mathcal{L} (Figure 6). In the series $m=0$, the lowest T_{I} value of $158^{\circ} \mathrm{C}$ is observed for the ethane derivative

Scheme 9. Synthesis of biphenyl analogue 9B.

Scheme 10. Synthesis of phosphonium salts $\mathbf{1 4 [m]}$.

Table 1. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right)$ and enthalpies $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right.$, in parentheses) for mesogens $\left.\mathbf{1 - 7}\right)$.

| |
| :--- | :--- | :--- |

${ }^{\mathrm{a}}$ Lit. (17). ${ }^{\mathrm{b}} \mathrm{A}$ crystal-crystal transition was observed at $79^{\circ} \mathrm{C}\left(11.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. ${ }^{\mathrm{c}} \mathrm{On}$ cooling, two additional transitions were observed at $253^{\circ} \mathrm{C}$ and $252^{\circ} \mathrm{C}$. ${ }^{\mathrm{d}}$ Microscopic observations. ${ }^{\mathrm{e}}$ The isotropic phase supercools by about 50 K and crystallises. ${ }^{\mathrm{f}}$ The nematic phase supercools to $90^{\circ} \mathrm{C}$ and crystallises.

Table 2. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right)$ and enthalpies ($\mathrm{kJ} \mathrm{mol}^{-1}$, in parentheses) for selected intermediates.

	$\mathcal{R} \backslash \mathcal{A}$		
8	COOH	Cr $197 \mathrm{I}^{\text {a }}$	Cr $227.5 \mathrm{SmA} 229.5 \mathrm{~N} 275 \mathrm{I}{ }^{\text {b }}$
11	$\mathrm{CH}=\mathrm{CHCOOEt}$	$\mathrm{Cr} 49 \mathrm{I}{ }^{\text {c }}$	Cr 68 E 167 SmA 183 I
12	$\mathrm{CH}=\mathrm{CHCOOH}$	Cr 196 (N 188) I	Cr 246 N 288 I (dec)
18	$\mathrm{COOC}_{5} \mathrm{H}_{11}$	d	Cr $76 \mathrm{SmA} 86 \mathrm{I}^{\text {e }}$

${ }^{\mathrm{a}}$ Lit. (17). ${ }^{\mathrm{b}}$ Lit. (23). ${ }^{\mathrm{c}}$ No mesophase upon supercooling to $-20^{\circ} \mathrm{C}$. ${ }^{\mathrm{d}}$ Not investigated. ${ }^{\mathrm{e}}$ Lit. (29) Cr 77.0 SmA 86.7 I .

Figure 3. Partial heating (lower trace) and cooling (upper trace) DSC curves for $\mathbf{4 B}[1]$ recorded at a scanning rate of $5 \mathrm{~K} \mathrm{~min}^{-1}$.
$\mathbf{1 B}[0]$, whereas the highest clearing point of $267^{\circ} \mathrm{C}$ is found for the ethene derivative $\mathbf{5 B}[\mathbf{0}]$. The extension of the terminal pentyl group in the structure in series $\mathrm{m}=0$ by an oxygen atom resulted in an average increase of T_{I} value by $16.5 \pm 1.6^{\circ} \mathrm{C}$ in series $\mathrm{m}=1$ (Figure 6).

A comparison of the clearing temperatures for pairs of isostructural derivatives shows that all carborane derivatives destabilize the mesophase relative to the benzene analogues, and that this destabilisation is greater by $6 \pm 2 \mathrm{~K}$ (excluding $\mathbf{6}[\mathrm{m}]$) for series $\mathrm{m}=0$ than for the oxygen-containing mesogens ($m=1$, Figure 7). Moreover, the degree of mesophase destabilisation strongly depends on the nature of the linking group \mathcal{L}. The smallest difference

28
Figure 5. Structure of compound 28, an analogue of 2B.

Figure 4. Natural textures observed in polarised light for $\mathbf{4 B}[1]$ in the same sample region and identified as (a) SmA phase $\left(230^{\circ} \mathrm{C}\right)$, (b) SmC phase $\left(210^{\circ} \mathrm{C}\right)$, (c) SmI phase $\left(190^{\circ} \mathrm{C}\right)$, (d) SmF phase $\left(177^{\circ} \mathrm{C}\right)$ and (e) G phase $\left(168^{\circ} \mathrm{C}\right)$. Magnification $60 \times$.

Figure 6. A plot of clearing temperatures T_{I} for two series of carborane mesogens $\mathbf{A}[\mathrm{m}]$ (circles) and two series of biphenyl mesogens $\mathbf{B}[\mathbf{m}]$ (diamonds). The lines are guides for the eye.
in $T_{\text {I }}$ of -50 K is observed for the dimethylene derivatives $1[1]\left(\mathcal{L}=-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$ and the largest of -208 K for the amides $\mathbf{6 [0]}$ ($\mathcal{L}=-\mathrm{CONH}-$).

3. Discussion and conclusions

Experimental data collected in Tables 1-2 show that the substitution of p-carborane for a benzene ring in the rigid core destabilises mesophases and eliminates smectic phases. This is consistent with results of our other studies of isostructural series of mesogens (8 20), and has been ascribed to the difference in the rotational symmetry of the two rings (fivefold for A vs. twofold for B) and consequently in conformational flexibility of their derivatives.

In agreement with our previous results $(13,15)$ a larger increase in mesophase stability for p-carborane derivatives as compared to the benzene analogues is

Figure 7. A plot of the difference between clearing temperatures for carborane mesogens and their benzene analogues $\left[\Delta T_{\mathrm{I}}=T_{\mathrm{I}}(\mathrm{A})-T_{\mathrm{I}}(\mathrm{B})\right]$. The lines are guides for the eye.
observed upon replacement of the terminal alkyl with an alkoxy chain. The origin of this additional stabilization is not clear, but it may be related to the stronger quadrupolar intermolecular interactions between the carborane cage and the alkoxyphenyl ring as compared to that of the alkylphenyl ring.

The data in Table 1 and in Figure 6 demonstrate qualitative (order) and quantitative (magnitude) differences between the effectiveness of the linking groups \mathcal{L} in mesophase stabilisation in the carborane derivatives $\mathbf{A}[\mathbf{m}]$ and their biphenyl analogues $\mathbf{B}[\mathbf{m}]$. In the latter series, the order of the effectiveness $(-\mathrm{CH}=\mathrm{CH}->-\mathrm{CONH}->-\mathrm{CH}=\mathrm{N}-\sim-\mathrm{CH}=\mathrm{CHCOO}-$ $\left.>-\mathrm{COO}->-\mathrm{CH}_{2} \mathrm{CH}_{2}->-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCO}-\right)$ is in general agreement with results for simple two-ring benzene derivatives I and II (3-5) (Figure 8), and the clearing temperatures T_{I} span about 150 K . This order reflects the importance of rigidity and the

Figure 8. A comparison of the linking group \mathcal{L} effectiveness on mesophase stability in four series of mesogens: I (5, 31), II (3, 32), III (3) and IV (6).
electronic interactions of the linking group with aromatic rings. In contrast, in the carborane series $\mathbf{A}[\mathrm{m}]$ the order of the group \mathcal{L} effectiveness is different $(-\mathrm{CH}=\mathrm{CHCOO}-\sim-\mathrm{COO}-\sim-\mathrm{CH}=\mathrm{CH}->-\mathrm{CH}=\mathrm{N}-$ $\sim-\mathrm{CH}_{2} \mathrm{CH}_{2}->-\mathrm{CONH}->-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCO}-$), and the range of temperatures T_{I} in the series is much smaller, about one-third of that found in biphenyls $\mathbf{B}[\mathbf{m}]$. This indicates that the strong steric and electronic interactions present in the biphenyl mesogens are largely absent, and that the choice of the linking group \mathcal{L} is much less critical for the mesophase stability in the carborane derivatives than in the benzene mesogens. The weakest $\mathrm{Ar}-\mathcal{L}$ electronic interactions exist for the saturated linking groups \mathcal{L} such as $-\mathrm{CH}_{2} \mathrm{CH}_{2}-$ and $\mathrm{CH}_{2} \mathrm{O}$ - and these compounds typically have low stability mesophases. In contrast, for saturated and weakly interacting rings, these two linking groups and also -COO- give rise to relatively stable mesophases, as evident from a comparison in cyclohexane-benzene and cyclohexane-cyclohexane derivatives III and IV (3, 6) (Figure 8).

The original analysis (3-5) of series I and II included only four out of seven groups \mathcal{L} used in the present studies. A literature search showed that the acrylate group, $\mathcal{L}=-\mathrm{CH}=\mathrm{CHCOO}-$, is very effective in stabilisation of the nematic phase in series I (31) and $\mathbf{I I}$ (32), whereas in series $\mathbf{B}[\mathbf{m}]$ its effectiveness is moderate and comparable to that of the azomethine group. This can be ascribed to the relatively large contribution of the acrylate group to the molecular anisometry in the two ring compounds I and II, whereas in the biphenyls $\mathbf{B}[\mathbf{m}]$ this contribution is relatively smaller. The significance of the linking group rigidity and extended electronic interactions are clearly apparent from a comparison of the two groups $\mathcal{L}-\mathrm{CH}=\mathrm{CHCOO}-$ and $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCO}-$. Reduction of the double bond in the acrylate increases the molecular flexibility, which in turn results in the depression of the clearing temperature by over 130 K . Evidence for this increased flexibility is provided by the unusually high enthalpy of over $5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ measured for the N-I transition in derivatives $7 \mathbf{B}[\mathrm{~m}]$. This enthalpy, which is nearly four times higher than a typical value, corresponds to a large entropy change and can be rationalised by large conformational changes at the phase transition due to excessive molecular flexibility of the derivatives.

The amido group, $\mathcal{L}=-\mathrm{CONH}-$, is unique among the linking groups. Its geometry is similar to that of an ester group, but unlike it the amido group is a H bond donor and capable of forming strong hydrogen bonds. Scant literature data (33) allows for limited comparison of the two linking groups. A series of 17 pairs of diesters 29 (34) and amido esters $\mathbf{3 0}(35,36)$ (Figure 9), and also several other pairs of compounds

Figure 9. Structure of diesters 29 (34) and amido esters $\mathbf{3 0}$ $(35,36)$.
(37) demonstrate that the amido group increases both the melting and clearing points and preferentially stabilizes the smectic phases of the mesogen relative to the corresponding esters. Recent FTIR and X-ray diffraction investigation revealed the existence of intermolecular H -bonding in smectic phases of mesogenic amides that stabilise the lamellar-type molecular arrangements (38).

Similar behaviour is observed in the series $\mathbf{B}[\mathbf{m}]$. The replacement of the ester group in 2B with the amido group in 6B increases the melting point by about 100 K and the T_{I} by 57 K , and eliminates the nematic phase in favour of smectic behavior (Table 3). In contrast, the same replacement of the linking groups in the carborane series has completely opposite effect: whereas the melting point is higher by a modest 30 K , the T_{I} is dramatically depressed by $46 \mathrm{~K}(\mathrm{~m}=1)$ and $65 \mathrm{~K}(\mathrm{~m}=0)$ and no smectic phases are induced.

This counterintuitive result can be attributed to the inability of the carborane derivatives $\mathbf{6 A}$ to form effective intermolecular H -bonds due to steric and electronic effects of the carborane on the carbonyl group. Thus, it can postulated that the steric bulk of the carborane prevents the close approach of the two molecules, and the moderate electron withdrawing character of the carborane group ($\sigma_{\mathrm{p}}=0.14$) (39) lowers the nucleophilicity (H -bond accepting ability) of the carbonyl group. For a better understanding of these effects, we performed comparative computational studies of two anilides 31A and 31B as models for amides $\mathbf{6 A}$ and $\mathbf{6 B}$, respectively $(40,41)$.
$A b$ initio calculations for two molecules constrained at the antiparallel orientation demonstrated that the formation of H -bonded dimer is moderately

Table 3. Change of clearing temperature upon linking group replacement.

31A

$\Delta \mathrm{SCF}$	$-1.4 \mathrm{kcal} / \mathrm{mol}$
$d_{\mathrm{H} \ldots \mathrm{O}}$	$2.282 \AA$
$d_{\mathrm{N} \ldots \mathrm{O}}$	$3.212 \AA$
μ	7.7 D

$-9.7 \mathrm{kcal} / \mathrm{mol}$
$2.197 \AA$
$3.158 \AA$
9.1 D

Figure 10. Two views (top and bottom) of molecular models for dimers of N-phenylcarborane-1-carboxamide (31A) and benzanilide (31B) obtained by geometry optimisation at the HF/3-21(d) level of theory. The relative orientation of the molecules in the dimers is constrained at antiparallel (the angle defined by $\mathbf{C}-\mathbf{C}(=\mathbf{O}) \cdots \mathbf{C}(=\mathbf{O})-\mathbf{C}$ is set at $\left.180^{\circ}\right)$. The dimerisation energy is calculated as the $\triangle \mathrm{SCF}$.
exothermic by $9.3 \mathrm{kcal} \mathrm{mol}^{-1}$ for benzanilide (31B), whereas for the carborane derivative $\mathbf{3 1 A}$ the dimerisation is only weakly favorable (Figure 10). The calculated lower stability of about $8 \mathrm{kcalmol}^{-1}$ is accompanied by about $0.08 \AA$ longer $\mathrm{H}^{\cdots} \mathrm{O}$ distances in the carborane dimer 31A than in the benzanilide dimer. In both dimers, the closest non-bonding separations correspond to the sum of van der Waals radii (42).

Removing the constraint for the antiparallel alignment allows for the full geometry optimization of the dimers and the formation of tighter hydrogen bonds. The molecules are rotated by 74° and 60° in the free dimers of $\mathbf{3 1 A}$ and 31B, respectively, and the $\mathrm{H}^{\cdots} \mathrm{O}$ distance falls by $0.13 \AA$ for the former and $0.16 \AA$ for benzanilide. This geometry change results in stabilisation of the dimers 31A and 31B by $7.5 \mathrm{kcal} \mathrm{mol}^{-1}$ and $3.8 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively.

Overall, the computational results confirm the lower tendency toward the H -bond formation in the carborane amides than in benzanilides. The separation of the NH and $\mathrm{O}=\mathrm{C}$ groups of the neighbouring molecules is nearly $0.1 \AA$ larger and the stabilisation energy at least $4.5 \mathrm{kcal} \mathrm{mol}^{-1}$ lower for the carborane anilide than for the benzene analogue. This, in part, is
a consequence of the large size of the carborane cluster, and, in part, the lower nucleophilicity of the carbonyl group. Calculations demonstrate that the van der Waals radius of the carborane is about $3.7 \AA$, whereas the "half-thickness" of the benzene ring is $1.75 \AA$. At the same time the charge density on the carbonyl oxygen atom is slightly lower ($q=-0.61$) in the isolated molecules of carborane amide 31A than in benzanilide ($q=-0.64$).

The computed structures for the benzanilide dimer are consistent with solid-state structures for 31B (43) and some of its simple derivatives $(44,45)$ in which molecules form infinite H -bonded chains. In some crystallographic modifications molecules are nearly parallel in the crystal lattice, and in some others long molecular axes form a substantial angle. Calculations demonstrate that these molecular arrangements should be relatively close in energy and hence benzanilides can achieve molecular alignments that are compatible with liquid crystalline phases. In contrast, significant stability in the carborane anilide dimer is gained only for nearly orthogonal arrangement of the molecules, which is incompatible with molecular alignments in typical liquid crystalline phases. These differences in molecular interactions and arrangement in the two amides are presumably the reason for the opposite effects of the substitution of the amido group for an ester group in 2, as shown in Table 3. Whereas the exchange of the groups in the benzene derivatives $\mathbf{2 B}[\mathbf{m}]$ leads to phase stabilisation, presumably due to the formation of nearly parallel H -bonded chains, the strong driving force for angular arrangements of molecules in the carborane anilides destabilizes the mesophase. Incorporation of an oxygen atom to the terminal chain in $\mathbf{6 A}$ [1] provides an alternative more sterically accessible H acceptor and partially alleviates the negative effect of the amido group.

Overall, the experimental data demonstrates that p-carborane is a bulky structural unit, which interacts with the linking groups in a similar way to a saturated system such as cyclohexane. As a consequence, the choice of the linking group \mathcal{L} has a relatively small impact on mesogenic properties of the compound. However, the bulk of the p-carborane strongly affects the effectiveness of the amido group in stabilisation of the mesophases by discouraging the formation of the H -bonds.

4. Experimental section

Materials and characterisation

${ }^{1} \mathrm{H}$ NMR: spectra were obtained at 270 MHz in CDCl_{3} and referenced to TMS, unless stated otherwise. ${ }^{13} \mathrm{C}$ NMR: spectra were obtained at 67.8 MHz in CDCl_{3}.

Elemental analysis was provided by Instrumental Analysis Center for Chemistry, Graduate School of Science, Tohoku University or at Atlantic Microlab, GA. p-Carborane was purchased from Katchem s.r.o. (Prague, Czech Republic).

Optical microscopy and phase identification was performed using a PZO "Biolar" polarised microscope equipped with a HCS402 Instec hot stage. Thermal analysis was obtained using a TA Instruments 2920 DSC. Transition temperatures (onset) and enthalpies were obtained using small samples ($1-2 \mathrm{mg}$) and a heating rate of $5 \mathrm{~K} \mathrm{~min}^{-1}$ under a flow of nitrogen gas. For DSC and microscopic analyses, each compound was additionally purified by filtration of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions to remove particles. The solutions were subsequently evaporated and the products were recrystallised from isooctane or toluene/isooctane mixture. The resulting crystals were dried in vacuum overnight at ambient temperature.

Transition temperatures for compounds 1-7 and some of their mesogenic intermediates are given in Tables 1 and 2. Melting points for other compounds are listed in the synthesis section.

Synthesis

1-(4-Pentyloxyphenyl)-12-[2-(4-pentylphenyl)ethyl]-p-carborane (1A[0]).
Olefin $\mathbf{5 A}[0]$ was hydrogenated at room temperature in a $\mathrm{EtOH} / \mathrm{AcOEt}$ mixture in the presence of $10 \% \mathrm{Pd}-$ C. After 12 h the mixture was filtrated through a Celite pad. The filtrate was concentrated to give crude product, which was purified by silica gel column chromatography (hexane). The resulting solid was recrystallised ($\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 71% yield of $\mathbf{1 A}[0]$ as colourless needles. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.87$ ($\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.45$ $(\mathrm{m}, ~ 8 \mathrm{H}), 1.50-3.75(\mathrm{br} \mathrm{m}, 10 \mathrm{H}), 1.56$ (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.73 (quint, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.89-$ $1.96(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2 H), 3.87 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.66 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.94 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.05 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR: $\delta 14.11,14.16,22.5$, 22.6, 28.2, 28.9, 31.3, 31.6, 35.4, 35.5, 39.7, 67.9, 79.9, 81.2, 113.6, 127.9, 128.2, 128.4, 137.1, 140.7, 159.0. MS: $m / z 480\left(\mathrm{M}^{+}\right), 161(100 \%)$. HRMS: m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~B}_{10} \mathrm{O}, 480.4395$; found 480.4391. Elemental analysis: calculated for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~B}_{10} \mathrm{O}, \mathrm{C} 64.96, \mathrm{H} 9.23$; found, C 65.02 , H 9.14\%.

1-(4-Pentyloxyphenyl)-12-[2-(4-pentyloxyphenyl)-ethyl]-p-carborane (1A[1]).

It was obtained from $\mathbf{5 A}[1]$ in 96% yield as colourless needles ($\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) following the procedure for

1A[0]. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.25-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.50-3.75$ (br m, 10 H), 1.73 (quint, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.75 (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.40(\mathrm{~m}, 2 \mathrm{H})$, $3.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ (d, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 13.97$, 13.99, 22.39, 22.44, 28.1, 28.2, 28.8, 29.0, 34.8, 39.8, $67.95,68.14,79.8,81.2,113.7,114.5,128.3,128.5,129.0$, 132.0, 157.6, 159.1. MS: m/z 496 (M ${ }^{+}$), 107 (100%). Elemental analysis: calculated for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~B}_{10} \mathrm{O}_{2}, \mathrm{C}$ 62.87, H 8.93; found, C 62.71, H 8.86\%.

4-Pentyloxy-4'-[2-(4-pentylphenyl)ethyl]biphenyl (1B[0]).

It was obtained from $\mathbf{5 B}[0]$ in a quantitative yield as a colourless solid after purification by silica gel column chromatography (hexane/AcOEt, 50/1) as described for 1A[0]. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.52(\mathrm{~m}, 8 \mathrm{H}), 1.58$ (quint, $J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.81 (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.58 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 4 \mathrm{H}), 3.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0,22.5,22.6,28.2$, $29.0,31.3,31.5,35.5,37.5,37.6,68.0,114.7,126.6$, $127.9,128.3,128.4,128.8,133.4,138.5,138.9,140.4$, $140.5,158.5 . \mathrm{MS}: ~ m / z 414\left(\mathrm{M}^{+}\right), 253$ (100% \%). Elemental analysis: calculated for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}, \mathrm{C}$ 86.90, H 9.24; found, C 86.64, H 9.05\%.

4-Pentyloxy-4'-[2-(4-pentyloxyphenyl) ethyl]biphenyl (1B[1]).

It was obtained from 5B[1] in 95% yield as a colourless solid after purification by silica gel column chromatography (hexane/AcOEt, 50/1) as described for 1A[0]. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.52(\mathrm{~m}, 8 \mathrm{H}), 1.78$ (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.81 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.90 (s, $4 \mathrm{H}), 3.93(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 6.82 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}: m / z 430$ $\left(\mathrm{M}^{+}\right), 107(100 \%)$. Elemental analysis: calculated for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{2}$, C 83.67, H 8.89; found, C 84.02, H 8.97\%.

4-Pentyloxyphenyl 12-(4-pentyloxyphenyl)-p-carborane1 -carboxylate (2A[1]).

Carboxylic acid $\mathbf{8 A}(0.5 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 ml) and treated with oxalyl chloride $(5.0 \mathrm{mmol})$ and a catalytic amount of DMF for 2 h at rt. Solvents were removed under reduced pressure. 4Pentyloxyphenol ($108 \mathrm{mg}, 0.6 \mathrm{mmol}$), pyridine (2 ml)
and a catalytic amount of DMAP were added and the mixture was stirred for 12 h at room temperature (RT). Aqueous $10 \% \mathrm{HCl}$ was added, and the mixture was extracted with AcOEt. The organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The pure product was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt, 20:1) and recrystallised (hexane) to give 82% yield of $\mathbf{2 A} \mathbf{A} \mathbf{1]}$ as colourless cubes. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.30-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.50-3.75$ (br m, 10H), 1.74 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.76 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.88 (t, J=6.8 Hz, 2H), $3.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 14.1, 22.5, 22.7, 28.2, 28.9, 29.0, 68.0, 68.4, 75.2, 85.8, $113.8,114.9,121.4,127.9,128.2,143.6,157.1,159.3$, 161.5. MS: $m / z 512\left(\mathrm{M}^{+}, 100 \%\right)$. HRMS: m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~B}_{10} \mathrm{O}_{4}, 512.3929$; found 512.3947. Elemental analysis: calculated for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~B}_{10} \mathrm{O}_{4}, \mathrm{C} 58.57$, H 7.86; found, C 58.66, H 7.93.

4-Pentyloxyphenyl 4'-pentyloxybiphenyl-4-carboxylate (2B[1]).

The ester was obtained from acid $\mathbf{8 B}$ in quantitative yield as a colourless solid according to procedure for 2A[1]. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.30-1.55(\mathrm{~m}, 8 \mathrm{H}), 1.80$ (quint, $J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.83 (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.97(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), \quad 4.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, ~ J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.22$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}: m / z 446$ $\left(\mathrm{M}^{+}\right), 266$ (100). Elemental analysis: calculated for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{4}, \mathrm{C} 78.00$, H 7.67; found, C 77.81, H 7.58\%.

4-Pentylphenyl (2E)-[12-(4-pentyloxyphenyl)-p-carboran-1-yl]propenoate (3A[0]).

The ester was obtained from acid $\mathbf{1 2 A}$ in quantitative yield as a colourless solid according to procedure for 2A[1]. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.89$ ($\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 0.91 (t , $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.43(\mathrm{~m}, 8 \mathrm{H}), 1.50-3.75$ (br m, 10 H), 1.60 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.74 (quint, $J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.99$ (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}$, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$. Elemental analysis: calculated for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~B}_{10} \mathrm{O}_{3}, \mathrm{C} 62.02$, H 8.10 ; found, C 62.10, H 8.08\%.

4-Pentyloxyphenyl (2E)-[12-(4-pentyloxyphenyl)-p-carboran-1-yl] propenoate (3A[1]).

The ester was obtained from acid $\mathbf{1 2} \mathbf{A}$ in 97% yield as a colourless solid according to procedure for $\mathbf{2 A}[\mathbf{1}] .{ }^{1} \mathrm{H}$

NMR: $\delta 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.34-1.46 (m, 8H), 1.50-3.75 (br m, 10H), 1.69-1.82 (m, 4H), 3.88 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 5.98 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.70$ (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$. Elemental analysis: calculated for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~B}_{10} \mathrm{O}_{4}, \mathrm{C} 60.20$, H 7.86; found, C 60.07, H 7.87\%.

4-Pentylphenyl (2E)-[4'-pentyloxybiphenyl-4-yl]propenoate ($\mathbf{3 B [0]}$).

The ester was obtained from acid 12B in 91\% yield as a colourless solid according to procedure for $\mathbf{2 A}[\mathbf{1}]$. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3 H), 1.25-1.55 (m, 8H), 1.63 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.82 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.01(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 4 \mathrm{H})$, 7.88 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0,22.45$, 22.51, 28.2, 28.9, 31.1, 31.5, 35.3, 68.1, 114.9, 116.8, $121.2,127.0,128.1,128.8,129.3,132.2,132.4,140.4$, 143.1, 146.0, 148.7, 159.3, 165.7. MS: $m / z 456\left(\mathrm{M}^{+}\right)$, 293 (100 \%). Elemental analysis: calculated for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{3}, \mathrm{C} 81.54, \mathrm{H} 7.96$; found, C 81.47, H 8.17\%.

4-Pentyloxyphenyl (2E)-[4'-pentyloxybiphenyl-4yl]propenoate (3B[1]).

The ester was obtained in 72% yield as a colourless solid according to procedure for $\mathbf{2 A}[1] .{ }^{1} \mathrm{H}$ NMR: δ $0.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-$ $1.55(\mathrm{~m}, 8 \mathrm{H}), 1.80$ (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.82 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.63$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (d, $J=$ $9.2 \mathrm{~Hz}, \quad 2 \mathrm{H}), \quad 6.99(\mathrm{~d}, \quad J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 4 \mathrm{H})$, $7.88(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.1,22.5,28.2$, $29.0,68.1,68.4,114.9,115.0,116.7,122.3,127.0$, 128.1, 128.8, 132.2, 132.5, 143.1, 144.1, 146.0, 156.8, 159.3, 165.9. MS: m/z 472 (M^{+}), 293 (100 \%). Elemental analysis: calculated for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{4}, \mathrm{C}$ 78.78, H 7.68; found, C 78.62, H 8.01\%.

1-(4-Pentyloxyphenyl)-12-(4-pentylphenylimino-methyl)-p-carborane (4A[0]).
A solution of aldehyde $\mathbf{1 0 A}(200 \mathrm{mg}, 0.6 \mathrm{mmol}), 4-$ pentylaniline $(118 \mathrm{mg}, 0.72 \mathrm{mmol})$ and a catalytic amount of TsOH in dry toluene $(5 \mathrm{ml})$ was refluxed under the Dean-Stark water trap for 12 h . Then the mixture was poured into saturated aqueous solution of NaHCO_{3} and extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and
concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt, 10:1) to give 268 mg (93% yield) of a solid, which was recrystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ yielding $4 \mathrm{~A}[0]$ as colourless rods. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.45(\mathrm{~m}, 8 \mathrm{H}), 1.50-3.75$ (br m, 10H), 1.58 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.74 (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.88$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.67$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.89$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR: $\delta 13.98,13.99,22.4,22.5,28.1,28.8,31.1$, $31.4,35.4,68.0,78.7,84.5,113.8,120.6,128.2,128.6$, 129.0, 141.9, 147.1, 154.9, 159.3. MS: $m / z 479\left(\mathrm{M}^{+}\right.$, 100%). HRMS: m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~B}_{10} \mathrm{NO}$, 479.4191; found 479.4228. Elemental analysis: calculated for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~B}_{10} \mathrm{NO}$, $\mathrm{C} 62.59, \mathrm{H} 8.61$; found, C 62.39; H 8.68\%.

1-(4-Pentyloxyphenyl)-12-(4-pentyloxyphenylimino-methyl)-p-carborane (4A[1]).

The compound was obtained in 97% yield as a colourless leaflets according to the procedure for $\mathbf{4 A}[0] .{ }^{1} \mathrm{H}$ NMR: $\delta 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.20-1.45(\mathrm{~m}, 8 \mathrm{H}), 1.50-3.75$ (br m, 10H), 1.50-1.58 (m, 2 H), 1.74 (quint, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.88 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.1,14.2,22.5,22.7,28.2,28.9,29.2,31.5$, $31.9,35.5,68.0,113.6,113.7,120.5,128.1,128.5,128.9$, 141.8, 147.0, 154.7, 159.1. MS: m/z 495 (M^{+}), 43 (100%). HRMS: m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~B}_{10} \mathrm{NO}_{2}$, 495.4141; found 495.4166. Elemental analysis: calculated for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~B}_{10} \mathrm{NO}_{2}, \mathrm{C} 60.57, \mathrm{H} 8.34, \mathrm{~N} 2.83$; found, C 60.60; H 8.25; N 2.79\%.

4-Pentyloxy-4'-(4-pentylphenyliminomethyl)biphenyl (4B[0]).

The compound was obtained according to the procedure for $\mathbf{4 A}[0]$. The crude product was recrystallised (n-hexane containing some $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 77% yield of imine $\mathbf{4 B}[0]$ as yellowish leaflets. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 3 H), $1.30-1.53(\mathrm{~m}, 8 \mathrm{H}), 1.64$ (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.82 (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.01(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0,22.45,22.53,28.2$, $28.9,31.2,31.5,35.5,68.1,114.9,120.1,126.8,128.1$, $129.07,129.14,132.5,134.7,140.8,143.5,149.7,159.1$, 159.2. MS: $m / z 413\left(\mathrm{M}^{+}, 100\right.$ \%). Elemental analysis: calculated for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}, \mathrm{C} 84.22$, H 8.53, N 3.39; found, C 84.02, H 8.59, N 3.34\%.

4-Pentyloxy-4'-(4-pentyloxyphenyliminomethyl)biphenyl (4B[1]).
The compound was obtained according to the procedure for $\mathbf{4 A}[0]$. The crude product was recrystallised ($n-$ hexane containing some $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 86% yield of imine $\mathbf{4 B}[1]$ as a yellowish solid. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.94(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.55(\mathrm{~m}$, $8 \mathrm{H}), 1.75-1.88(\mathrm{~m}, 4 \mathrm{H}), 3.98(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.65$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.93$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 8.51 (s, 1H). ${ }^{13} \mathrm{C}$ NMR: $\delta 13.9,22.5,28.3,29.0,29.1$, $68.3,68.5,115.1,115.2,122.2,126.8,128.2,129.1$, 132.8, 135.1, 143.5, 145.1, 157.7, 158.0, 159.4. MS: m / z $429\left(\mathrm{M}^{+}, 100 \%\right)$. Elemental analysis: calculated for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{2}, \mathrm{C} 81.08$, H 8.21, N 3.26; found, C 81.17, H 8.41, N 3.24\%.

1-(4-Pentyloxyphenyl)-12-[2-(4-pentylphenyl)ethe-nyl]-p-carborane (5A[0]).

A solution of methanesulfonyl derivative $\mathbf{1 7 A}[0]$ ($634 \mathrm{mg}, 1.1 \mathrm{mmol}$) and DBU ($0.33 \mathrm{ml}, 2.2 \mathrm{mmol}$) in anhydrous toluene (6 ml) was refluxed for 20 h . The mixture was poured into $10 \% \mathrm{HCl}$ and extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude product was purified by silica gel column chromatography (hexane/AcOEt, 20:1) to give $499 \mathrm{mg}(94 \%$ yield) of $\mathbf{5 A}[0]$ as a colourless needles $\left(\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR: $\delta 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.22-1.46(\mathrm{~m}, 8 \mathrm{H}), 1.50-3.75$ (br m, 10H), 1.57 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.73 (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.53 $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.1,22.5$, 22.6, 28.2, 28.9, 31.1, 31.5, 35.7, 67.9, 79.2, 81.6, 113.7, 125.1, 126.4, 128.1, 128.5, 128.6, 132.6, 133.0, 143.3, 159.0. MS: $m / z 478\left(\mathrm{M}^{+}\right), 135$ (100%). HRMS: m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~B}_{10} \mathrm{O}, 478.4239$; found 478.4258 . Elemental analysis: calculated for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~B}_{10} \mathrm{O}, \mathrm{C}$ 65.23, H 8.84; found, C 65.26, H 8.73\%.

1-(4-Pentyloxyphenyl)-12-[2-(4-pentyloxypheny-l)ethenyl]-p-carborane (5A[1]).

A mixture of alcohol 19A[1] ($500 \mathrm{mg}, 0.977 \mathrm{mmol}$), $\mathrm{MeSO}_{2} \mathrm{Cl}(0.09 \mathrm{ml}, 1.17 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.41 \mathrm{ml}$, 2.93 mmol) was stirred at RT for 8 h . Then the mixture was poured into $10 \% \mathrm{HCl}$ and the whole was extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product purified by column chromatography (SiO_{2}, n-hexane/AcOEt, 15:1) to give 423 mg (88%
yield) of $\mathbf{5 A}[1]$ as colourless cubes (n-hexane). ${ }^{1} \mathrm{H}$ NMR: $\delta 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.30-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.50-3.75$ (br m, 10H), 1.74 (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.76 (quint, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.87 (t, J=6.7 Hz, 2H), 3.93 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (d, $J=$ $9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0$, 22.39, 22.43, 28.1, 28.8, 28.9, 67.95, 68.03, 79.5, 81.4, $113.8,114.6,123.8,127.8,127.9,128.2,128.6,132.7$, 159.2, 159.4. MS: $m / z 494$ ($\mathrm{M}^{+}, 100 \%$). HRMS: m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~B}_{10} \mathrm{O}_{2}, 494.4188$; found 494.4161. Elemental analysis: calculated for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~B}_{10} \mathrm{O}_{2}, \mathrm{C}$ 63.12, H 8.56; found, C 62.87, H 8.56\%.

4-Pentyloxy-4'-[(1E)-2-(4-pentylphenyl) ethenyl]biphenyl (5B[0]).

To a solution of 4-pentylbenzyltriphenylphosphonium bromide ($554 \mathrm{mg}, 1.34 \mathrm{mmol}$) in anhydrous DMF was added $\mathrm{NaH}(1.34 \mathrm{mmol})$ portionwise at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min . Then aldehyde $\mathbf{1 0 B}(301 \mathrm{mg}, 1.12 \mathrm{mmol})$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$ and the mixture was stirred at RT for 3 h . Then $10 \% \mathrm{HCl}$ was added at $0^{\circ} \mathrm{C}$ and the precipitate was filter off, washed with n hexane and dried in vacuo to give 194 mg (35% yield) of $\mathbf{5 B}[\mathbf{0}]$ as a colourless solid. ${ }^{1} \mathrm{H}$ NMR: $(600 \mathrm{MHz}) \delta 0.84$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.49(\mathrm{~m}$, 8 H), 1.63 (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.81 (quint, $J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.61(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.97 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0$, $22.5,22.6,28.2,29.0,31.1,31.5,35.7,68.1,114.8,126.4$, $126.79,126.82,127.3,127.8,128.4,128.8,133.0,134.8$, 135.9, 139.8, 142.6, 158.8. MS: $m / z 412\left(\mathrm{M}^{+}, 100\right)$. Elemental analysis: calculated for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}, \mathrm{C} 87.33$, H 8.79. Found; C, 87.16, H 9.02\%.

4-Pentyloxy-4'-[(1Z)-2-(4-pentylphenyl)ethenyl]biphenyl (5B[0]-Z).

The filtrate from the preparation of $\mathbf{5 B}[\mathbf{0}]$ was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt, 50/1) to give 227 mg (41% yield) of the Z-alkene $\mathbf{5 B}[0]-Z .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}): \delta 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.48(\mathrm{~m}, 8 \mathrm{H}), 1.60$ (quint, $J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.81 (quint. $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.57 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), \quad 7.05(\mathrm{~d}, \quad J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), \quad 7.22(\mathrm{~d}$,
$J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.

4-Pentyloxy-4'-[($1 E)$-2-(4-pentyloxyphenyl) ethenyl]biphenyl (5B[1]).

The compound was obtained in 38% yield according to the procedure for $\mathbf{5 B}[\mathbf{0}] .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}): \delta 0.94(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.0(\mathrm{~m}$, 8 H), 1.80 (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.81 (quint, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.98(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}$, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.58(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}: m / z 428\left(\mathrm{M}^{+}\right.$, 100). Elemental analysis: calculated for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{2}, \mathrm{C}$ 84.07, H 8.47; found, C, 84.12, H 8.50\%.

N-(4-Pentylphenyl)-12-(4-pentyloxyphenyl)-p-car-borane-1-carboxamide (6A[0]).

Carboxylic acid $\mathbf{8 A}(700 \mathrm{mg}, 2.0 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ and treated with oxalyl chloride $(0.87 \mathrm{ml}, 10 \mathrm{mmol})$ and a catalytic amount of DMF for 1 h at RT. Solvents were removed under reduced pressure. 4-Pentylaniline $(392 \mathrm{mg}, 2.4 \mathrm{mmol})$ and pyridine (3 ml) were added and the mixture was stirred for 3 h at RT. Aqueous $10 \% \mathrm{HCl}$ was added, and the mixture was extracted with AcOEt. The organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The pure product was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt, 20:1) and recrystallised (hexane) to give 764 mg (77% yield) of 6A[0] as a colourless solid. ${ }^{1} \mathrm{H}$ NMR: δ 0.87 (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-$ $1.50(\mathrm{~m}, 8 \mathrm{H}), 1.50-3.75$ (br m, 10H), 1.74 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.56 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.54 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}, ~ J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H). ${ }^{13}$ C NMR: $\delta 14.0,22.4,22.5,28.1,28.8,31.1,31.3$, $35.3,68.0,79.1,84.9,113.9,119.9,128.0,128.1,128.9$, 134.3, 140.2, 158.6, 159.5. Elemental analysis: calculated for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~B}_{10} \mathrm{NO}_{2}, \mathrm{C} 60.57, \mathrm{H} 8.34$; found, C 60.62, H 8.29\%.

N-(4-Pentyloxyphenyl)-12-(4-pentyloxyphenyl)-p-carborane-1-carboxamide (6A[1]).
The amide was obtained in 87% yield according to the procedure for $\mathbf{6 A}[\mathbf{0}] .{ }^{1} \mathrm{H} \mathrm{NMR}: \delta 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.50-$ 3.75 (br m, 10H), $1.65-1.85(\mathrm{~m}, 4 \mathrm{H}), 3.88(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (br $\mathrm{s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0,22.41$,
22.44, 28.1, 28.8, 28.9, 68.0, 68.3, 79.1, 84.9, 113.9, $114.8,121.7,128.0,128.1,129.6,156.6,158.6,159.5$. Elemental analysis: calculated for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~B}_{10} \mathrm{NO}_{3}, \mathrm{C}$ 58.68, H 8.08; found, C 58.63, H 8.25\%.

N-(4-Pentylphenyl)-4'-pentyloxybiphenyl-4-carboxamide (6B[0]).
The amide was obtained in 81% according to the procedure for $\mathbf{6 A}[0]$ and recrystallised from AcOEt/ toluene. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.53(\mathrm{~m}, 8 \mathrm{H}), 1.62$ (quint, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82$ (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.17$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.57 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (br s, 1H), 7.89 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$). Elemental analysis: calculated for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{2}, \mathrm{C} 81.08, \mathrm{H} 8.21, \mathrm{~N} 3.26$; found, C 80.92, H 8.31, N 3.21\%.

N-(4-Pentyloxyphenyl)-4'-pentyloxybiphenyl-4-carboxamide (6B[1]).
The amide was obtained in 82% yield according to the procedure for $\mathbf{6 A}[0]$ and recrystallised from AcOEt/toluene. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 0.95 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.53(\mathrm{~m}, 8 \mathrm{H}), 1.79$ (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.82 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.96(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, ~ J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66 (br s, 1 H), 7.89 (d, $J=8.4 \mathrm{~Hz}$, $2 H)$. Elemental analysis: calculated for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{3}$, C 78.17, H 7.92, N 3.14; found, C 78.01, H 8.04, N 3.27%.

2-[12-(4-Pentyloxyphenyl)-p-carboran-1-yl]ethyl 4pentylbenzoate (7A[0]).
4-Pentylbenzoyl chloride $(0.14 \mathrm{ml}, 0.69 \mathrm{mmol})$ was added to a solution of alcohol 9A ($200 \mathrm{mg}, 0.57 \mathrm{mmol}$) and a catalytic amount of DMAP in pyridine (2 ml) and the mixture was stirred for 45 h at RT. The reaction mixture was poured into 10% aqueous HCl solution and extracted with AcOEt , washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\mathrm{AcOEt}, 10: 1$) to give 299 mg (100% yield) of ester 7A[0] as a colourless solid. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.44(\mathrm{~m}, 8 \mathrm{H}), 1.50-$ 3.75 (br m, 10H), 1.63 (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.73 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.15(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.

Elemental analysis: calculated for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{~B}_{10} \mathrm{O}_{3}, \mathrm{C}$ 61.80, H 8.45; found, C 61.54, H 8.40\%.

2-[12-(4-Pentyloxyphenyl)-p-carboran-1-yl]ethyl 4pentyloxybenzoate (7A[1]).

The ester was obtained in 92% yield as colourless rods according to the procedure for $\mathbf{7 A} \mathbf{A} \mathbf{0}]$. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.91$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.50(\mathrm{~m}$, 8 H), 1.50-3.75 (br m, 10H), 1.73 (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.81 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.14(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$. MS: $m / z 540\left(\mathrm{M}^{+}, 100 \%\right)$. HRMS: m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{~B}_{10} \mathrm{O}_{4}, 540.4243$; found 540.4266. Elemental analysis: calculated for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{~B}_{10} \mathrm{O}_{4}, \mathrm{C}$ 59.97, H 8.20; found, C 59.91, H 8.29\%.

(4'-Pentyloxybiphenyl-4-yl)ethyl 4-pentylbenzoate (7B[0]).

The ester was obtained from alcohol 9B in 85% yield as a colourless solid according to the procedure for $7 \mathrm{~A}[0]$. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.24-1.53(\mathrm{~m}, 8 \mathrm{H}), 1.63$ (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.81 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.65(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.10$ (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.99 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.54 (t, $J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.503$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.505(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 13.97,14.01,22.5,28.2,29.0,30.8,31.4,34.9$, 36.0, 65.3, 68.0, 114.7, 126.8, 127.7, 127.9, 128.4, 129.3, 129.6, 133.2, 136.3, 139.2, 148.5, 158.6, 166.6. MS: m/z $458\left(\mathrm{M}^{+}\right), 266(100 \%)$. Elemental analysis: calculated for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{3}, \mathrm{C} 81.18$, H 8.35; found, C, 81.01, H 8.35\%.

2-(4'-Pentyloxybiphenyl-4-yl)ethyl 4-pentyloxybenzoate (7 B[1]).

The ester was obtained from alcohol 9B in 92\% yield as a colourless solid according to the procedure for $7 \mathrm{~A}[0]$. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.935$ (t, $\left.J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.940$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), $1.25-1.55(\mathrm{~m}, 8 \mathrm{H}), 1.81$ (quint, $J=$ $6.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.09(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.99$ (t, $J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.90 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.97$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 13.97,14.00,22.4,22.5$, 28.1, 28.2, 28.8, 29.0, 34.9, 65.1, 68.0, 68.2, 114.0, 114.7, $122.4,126.8,127.9,129.3,131.5,133.2,136.4,139.1$, 158.6, 163.0, 166.3. MS: $m / z 474\left(\mathrm{M}^{+}\right), 266$ (100 \%). Elemental analysis: calculated for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{4}, \mathrm{C} 78.45$, H 8.07; found, C, 78.16, H 8.30\%.

2-[12-(4-Pentyloxyphenyl)-p-carboran-1-yl]ethyl E-4-pentylcyclohexane-1-carboxylate (7A[CHx]).
The ester was obtained from alcohol 9A and E-4-pentylcyclohexane-1-carbonyl chloride as colourless leaflets according to the procedure for 7A[0]. M.p. 82$84^{\circ} \mathrm{C}\left(\mathrm{DSC}: 83^{\circ} \mathrm{C}, 43.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$). ${ }^{1} \mathrm{H}$ NMR: $\delta 0.88$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.45(\mathrm{~m}$, $17 \mathrm{H}), 1.50-3.60(\mathrm{br} \mathrm{m}, 10 \mathrm{H}), 1.73$ (quint, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.80(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.00(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.17\left(\mathrm{tt}, J_{1}=12.2 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.65$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$). Elemental analysis: calculated for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{~B}_{10} \mathrm{O}_{3}, \mathrm{C} 61.10$, H 9.49; found, C 60.89, H 9.78\%.

2-[12-(4-Pentyloxyphenyl)-p-carboran-1-yl]ethyl 4-pentylbicyclo[2.2.2]octane-1-carboxylate (7A[BCO]).
The ester was obtained from alcohol 9 A as colourless rods according to the procedure for $7 \mathrm{~A}[0]$. The acid chloride was prepared from 4-pentylbicyclo[2.2.2] octane-1-carboxylic acid and $(\mathrm{COCl})_{2}$. M.p. 113$114^{\circ} \mathrm{C}$ (DSC: $112^{\circ} \mathrm{C}, 41.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$). ${ }^{1} \mathrm{H}$ NMR: $\delta 0.87$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.40$ (m, 18H), 1.50-3.60 (br m, 10H), 1.69-1.75 (m, 8H), $1.98(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H})$. HRMS: m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{~B}_{10} \mathrm{O}_{3}$, 556.4928; found, 556.4919. Elemental analysis: calculated for $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{~B}_{10} \mathrm{O}_{3}, \mathrm{C} 62.55$, H 9.41 ; found, C 62.12, H 9.61\%.

4'-Pentyloxy-4-biphenylcarboxylic acid (8B) (23).

Pentyl 4'-pentyloxy-4-biphenylcarboxylate (458 mg , 1.29 mmol) was dissolved in THF (5 ml), and 10% aqueous $\mathrm{KOH}(3 \mathrm{ml})$ was added at RT . The reaction mixture was refluxed for 5 h and poured into 10% HCl solution. The resulting precipitate was filtered off, washed with EtOH and dried to give $329 \mathrm{mg}(90 \%$ yield) of acid 8B as a colorless solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.44$ (m, 4 H), 1.73 (quint, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.67 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}$: $\mathrm{m} / \mathrm{z} 284\left(\mathrm{M}^{+}\right) 214$ (100 \%).

2-[12-(4-Pentyloxyphenyl)-p-carboran-1-yl]ethanol (9A).

A 1.56 M solution of $n-\mathrm{BuLi}(6.0 \mathrm{ml}, 9.36 \mathrm{mmol})$ in hexane was added dropwise to a solution of 1-(4-pentyloxyphenyl)-p-carborane (17) (22A, 2.39 g , $7.8 \mathrm{mmol})$ in a mixture of benzene $(20 \mathrm{ml})$ and ether $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under Ar. After stirring at room
temperature for 30 min , the mixture was cooled to $0^{\circ} \mathrm{C}$, and 2-bromo-1-(2-tetrahydropyranoxy)ethane $(1.63 \mathrm{~g}, 7.8 \mathrm{mmol})$ was added. The resulting mixture was stirred for 12 h at RT, poured into water and organic products were extracted with AcOEt. The extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and solvents removed. The resulting residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{AcOEt} /\right.$ hexane in 1:20 ratio) to give 2.27 g (67% yield) of 2-(4-pentyloxy-phenyl)-12-(2-(2-tetrahydropyranoxy)ethyl)-p-carborane (23A) as a colourless oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.90(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.68(\mathrm{~m}, 10 \mathrm{H}), 1.50-4.00(\mathrm{br} \mathrm{m}$, 10 H), 1.73 (quint, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.98(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.17\left(\mathrm{dt}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.44$ $3.52(\mathrm{~m}, 1 \mathrm{H}), 3.55\left(\mathrm{dt}, J_{1}=7.3 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.75-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.48$ $(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$].

The protected alcohol $\mathbf{2 3 A}(1.39 \mathrm{~g}, 3.2 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(4 \mathrm{ml})$ containing a catalytic amount of p-toluenesulfonic acid monohydrate and the solution was stirred for 18 h at RT. After the solvent was removed under reduced pressure, the residue was dissolved in AcOEt , the solution was washed with saturated NaHCO_{3} and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Solvents were removed under reduced pressure and the resulting residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{AcOEt} /\right.$ hexane in $1: 10$ ratio) to give 0.653 g (58% yield) of alcohol 9 A as colourless cotton-like crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane). M.p. $61-62{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.44$ $(\mathrm{m}, 4 \mathrm{H}), 1.50-4.00(\mathrm{br} \mathrm{m}, 10 \mathrm{H}), 1.73$ (quint, $J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.95$ (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.47$ (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.87 (t, J=6.6 Hz, 2H), 6.65 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{~B}_{10} \mathrm{O}_{2}, 350.3249$; found, 350.3278. Elemental analysis: calculated for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{~B}_{10} \mathrm{O}_{2}$, C 51.40, H 8.63; found, C 50.76, H 8.61\%.

2-(4'-Pentyloxybiphenyl-4-yl)ethanol (9B).

To a solution of ethyl 4'-pentyloxy-4-biphenylacetate (26B, $474 \mathrm{mg}, 1.45 \mathrm{mmol})$ in dry THF $(5 \mathrm{ml})$ was added $\mathrm{LiAlH}_{4}(110 \mathrm{mg}, 2.9 \mathrm{mmol})$ in small portion at $0^{\circ} \mathrm{C}$ under Ar and the reaction mixture was stirred at RT for 6 h . The reaction mixture was poured into ice water and $10 \% \mathrm{HCl}$ was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt, 5/1) to give 339 mg (82% yield) of alcohol 9B as a colourless solid. M.p. $132-134^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.52(\mathrm{~m}, 4 \mathrm{H})$, $1.40(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81$ (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.91 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}$,
$J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.497(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.504(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0,22.4,28.2,28.9$, 38.7, 63.6, 68.0, 114.7, 126.8, 127.9, 129.3, 133.2, 136.8, 139.1, 158.6. Elemental analysis: calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2}, \mathrm{C} 80.24, \mathrm{H} 8.51$. Found; C, 80.01, H 8.58\%.

12-(4-Pentyloxyphenyl)-p-carborane-1-carbaldehyde

 (10A).To a stirred solution of 1-(4-pentyloxyphenyl)-pcarborane (17) (22A, $1.00 \mathrm{~g}, 3.27 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ was added dropwise 1.56 M hexane solution of $n-\mathrm{BuLi}(2.51 \mathrm{ml}, 3.92 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under Ar atmosphere and the reaction mixture was stirred at RT for 30 min . Then $\mathrm{HCO}_{2} \mathrm{Et}(0.32 \mathrm{ml}, 3.92 \mathrm{mmol})$ was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred at RT for 24 h . The mixture was poured into water and the whole was extracted with AcOEt. The organic layer was washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography using $15: 1$ hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give 802 mg (74% yield) of aldehyde 10A as a colourless solid, which was recrystallised from n-hexane. M.p. $59^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.91$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.50-3.75$ (br m, 10 H), 1.74 (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.67(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H})$. Elemental analysis: calculated for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~B}_{10} \mathrm{O}_{2}$, C 50.27, H 7.84; found, C $50.46, \mathrm{H}$ 7.77\%.

4'-Pentyloxybiphenyl-4-carbaldehyde (10B).

To a solution of pentyl 4'-pentyloxybiphenyl-4-carboxylate ($\mathbf{2 1 B}, 1.65 \mathrm{~g}, 4.66 \mathrm{mmol}$) in dry THF (20 ml) was added $\mathrm{LiAlH}_{4}(353 \mathrm{mg}, 9.32 \mathrm{mmol})$ in small portion at $0^{\circ} \mathrm{C}$ under Ar and the reaction mixture was stirred at RT for 6 h . Then the reaction mixture was poured into ice water and added $10 \% \mathrm{HCl}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt , 5/1) to give $1.13 \mathrm{~g}(90 \%$ yield) of 4'-pentyloxybiphenyl-4-methanol as a colourless solid. M.p. $147-149^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.94$ ($\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), $1.35-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{t}, J=6.2 \mathrm{~Hz}$, 1 H), 1.82 (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.73(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.42 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) 7.51(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0,22.5,28.2,29.0,65.2$, $68.1,114.8,126.8,127.5,128.0,133.1,139.1,140.3$, 158.8. MS: $m / z 270\left(\mathrm{M}^{+}\right), 200(100 \%)$.

Without further purification the alcohol $(1.13 \mathrm{~g}$, 4.19 mmol) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{ml})$, Celite $(1.00 \mathrm{~g})$ was added followed by pyridinium chlorochromate $(4.51 \mathrm{~g}, 20.94 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at RT for 6 h , filtered through a pad of Celite and the filtrate was concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt , 10/1) to give $1.06 \mathrm{~g}(94 \%$ yield) of aldehyde 10B as a colourless solid. ${ }^{1} \mathrm{H}$ NMR: δ $0.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.82$ (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, ~ J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 10.03(\mathrm{~s}, 1 \mathrm{H})$. MS: m/z $268\left(\mathrm{M}^{+}\right)$, 198 (100 \%).

Ethyl (2E)-3-[12-pentyloxyphenyl)-p-carboran-1-yl]-2-propenoate (11A).
$\mathrm{NaH}(63 \mathrm{mg}, 1.57 \mathrm{mmol})$ was added portionwise to a solution of ethyl diethylphosphonoacetate $(0.31 \mathrm{ml}$, $1.57 \mathrm{mmol})$ in anhydrous DMF $(1 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at RT for 30 min . Then a solution of aldehyde $\mathbf{1 0 A}(350 \mathrm{mg}, 1.1 \mathrm{mmol})$ in anhydrous DMF $(10 \mathrm{ml})$ was added to a reaction mixture at $0^{\circ} \mathrm{C}$. After stirring at RT for 30 min , the mixture was poured into ice water and extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt , 20/1) to give $382 \mathrm{~g}(90 \%$ yield $)$ of ester $\mathbf{1 1 A}$ as colourless solid. M.p. $49^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.50-3.75$ (br m, 10H), 1.73 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.89 (t , $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.79$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 14.0, 14.1, 22.4, 28.1, 28.8, 60.8, 67.9, 75.9, 83.3, 113.6, 124.3, 127.9, 128.1, 142.5, 159.0, 164.8. Elemental analysis: calculated for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~B}_{10} \mathrm{O}_{3}, \mathrm{C}$ 53.44, H 7.97; found, C 53.62, H 8.08\%.

Ethyl (2E)-3-[4'-pentyloxybiphenyl-4-yl]-2-propeno-

 ate $(11 B)$.The ester was obtained from aldehyde 10B $(3.73 \mathrm{mmol})$ in 89% yield as a colourless solid according to the procedure for $\mathbf{1 1 A}$. M.p. $67^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3 H), $1.37-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.82$ (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $4.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.45$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 4 \mathrm{H}), 7.71(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR: $\delta 13.9,14.2,22.4,28.1,28.9,60.3,67.9$, $114.8,117.5,126.8,127.9,128.4,132.2,132.6,142.5$, 144.1, 159.1, 166.9. MS: $m / z 338\left(\mathrm{M}^{+}, 100 \%\right)$.

Elemental analysis: calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3}, \mathrm{C} 78.07$, H 7.74; found, C 77.93, H 7.82\%.
(2E)-3-[12-Pentyloxyphenyl-p-carboran-1-yl]-2-propenoic acid (12A).
Aqueous $\mathrm{NaOH}(10 \%, 2 \mathrm{ml})$ was added to a stirred solution of ethyl ester $\mathbf{1 1 A}(95 \mathrm{mg}, 0.23 \mathrm{mmol})$ in EtOH $(2 \mathrm{ml})$ at RT. The reaction mixture was stirred for 3 h , and the solvent removed. The residue was poured into $10 \% \mathrm{HCl}$ and extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give $86 \mathrm{mg}(100 \%$ yield) of acid $\mathbf{1 2 A}$ as a colourless solid. M.p. $197^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.91$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.50-3.75(\mathrm{~m}, 10 \mathrm{H})$, 1.73 (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 5.80 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$. Elemental analysis: calculated for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~B}_{10} \mathrm{O}_{3}$, C 51.04, H 7.50; found, C 51.18, H 7.46\%.
(2E)-3-[4'-Pentyloxybiphenyl-4-yl]-2-propenoic acid (12B).
Ethyl ester 11B ($900 \mathrm{mg}, 2.66 \mathrm{mmol}$) was dissolved with 5 ml of THF , and 3 ml of $10 \% \mathrm{KOH}$ aqueous solution was added at room temperature. After being refluxed for 5 h , the reaction mixture was poured into $10 \% \mathrm{HCl}$ aqueous solution. Then the precipitate was filtered off, washed with EtOH and dried to give 717 mg (87% yield) of acid 12B as a colourless solid, which was recrystallliaed from AcOH . M.p. $247^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.95(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.55(\mathrm{~m}$, 4 H), 1.82 (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.46$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.54 (d, J=8.9 Hz, 2H), 7.59 (s, 4H), 7.79 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$. MS: $m / z 310\left(\mathrm{M}^{+}\right) 240$ (100%). Elemental analysis: calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}, \mathrm{C} 77.39$, H 7.14; found, C 77.15, H 7.15\%.

(4-Pentylbenzyl)triphenylphosphonium bromide (14[0]) (25).

A mixture of bromide 15[0] and triphenylphosphine (1.1 equiv.) in anhydrous toluene was refluxed for 12 h . After cooling, the phosphonium salt was precipitated, filtered off, washed with anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to give 94% yield of phosphonium salt $\mathbf{1 4 [0]}$ as a colourless solid. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.37(\mathrm{~m}, 4 \mathrm{H})$, 1.52 (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 5.35 (d, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.98$ $\left(\mathrm{dd}, J_{1}=2.2 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.58-7.81(\mathrm{~m}, 15 \mathrm{H})$. Elemental analysis: calculated for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{BrP}, \mathrm{C}$ 71.54, H 6.41; found, C 71.55, H 6.47\%.
(4-Pentyloxybenzyl)triphenylphosphonium chloride (14[1]).

The salts was obtained in 78% yield as described for 14[0]. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.46$ (m, 4H), 1.73 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01\left(\mathrm{dd}, J_{1}=2.4 \mathrm{~Hz}, J_{l}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.58-7.81 (m, 15H).

4-Pentylbenzyl bromide (15[0]) (25).

A mixture of 4-pentylbenzyl alcohol (25) (27[0], $1.78 \mathrm{~g}, 10 \mathrm{mmol}$) and 47% aqueous $\mathrm{HBr}(8.6 \mathrm{ml}$, 50 mmol) in benzene (10 ml) was refluxed for 6 h . The mixture was cooled and the organic layer was separated. The organic layer was washed with saturated NaHCO_{3} followed by brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $)$ to give 2.13 g (89% yield) of bromide $\mathbf{1 5 [0]}$ as a colourless oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.24-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.60$ (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.59 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.1,22.6$, 31.1, 31.5, 33.9, 35.7, 128.7, 128.9, 134.9, 143.3. MS: $m / z 240\left(\mathrm{M}^{+}\right), 161(100 \%)$. HRMS: m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{Br}, 240.0514$; found 240.0549 .

4-Pentyloxybenzyl chloride (15[1]) (46).

Thionyl chloride ($4 \mathrm{ml}, 50 \mathrm{mmol}$) followed by a catalytic amount of DMF were added to a solution of 4-pentyloxybenzyl alcohol (47) (27[1], 2.00 g , $10.3 \mathrm{mmol})$ in benzene $(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 6 h and solvents removed. The resulting residue was passed through a short silica gel column (hexane/AcOEt, 5:1) to give 1.92 g (88% yield) of chloride 15[1] as a colourless oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.53(\mathrm{~m}, 4 \mathrm{H})$, 1.78 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.95(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.56 $(\mathrm{s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$. MS: m/z $212\left(\mathrm{M}^{+}\right), 107(100 \%)$. HRMS: m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{Cl}, 212.0968$; found 212.0956.

1-[12-(4-Pentyloxyphenyl)-p-carboran-1-yl]-2-(4pentylphenyl)ethanol (16A[0]).

To a suspension of $\mathrm{Mg}(582 \mathrm{mg}, 24 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ was added dropwise a solution of p pentylbenzyl bromide ($\mathbf{1 5}[\mathbf{0}], 2.88 \mathrm{~g}, 12 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$ and the mixture was stirred at RT for 15 min . Then a solution of aldehyde $\mathbf{1 0 A}$ $(2.00 \mathrm{~g}, 6.0 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$ was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred at RT for 12 h . Then the mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$
at $0^{\circ} \mathrm{C}$ and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt, 20:1) to give 1.52 g (51% yield) of alcohol $\mathbf{1 6 A} \mathbf{A} \mathbf{0}$, which was recrystallised (EtOH) to form colourless cubes. M.p. $95-96^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), $1.23-1.45(\mathrm{~m}, 8 \mathrm{H}), 1.50-3.75$ (br m, 10 H), 1.57 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~d}, J=4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.74$ (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.32\left(\mathrm{dd}, J_{I}=11.1 \mathrm{~Hz}\right.$, $\left.J_{2}=13.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.55(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{dd}$, $\left.J_{1}=1.9 \mathrm{~Hz}, J_{2}=13.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.64-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.87$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.02$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$. MS: $m / z 496\left(\mathrm{M}^{+}\right), 162$ (100%). HRMS: m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~B}_{10} \mathrm{O}_{2}$, 496.4344; found 496.4365.

1-[12-(4-Pentyloxyphenyl)-p-carboran-1-yl]-2-(4pentylphenyl)ethyl methanesulfonate (17A[0]).

To a solution of alcohol $\mathbf{1 6 A} \mathbf{[0]}(828 \mathrm{mg}, 1.67 \mathrm{mmol})$ in anhydrous THF (8 ml) was added dropwise $n-\mathrm{BuLi}$ $(1.59 \mathrm{M}$ solution in hexane, $1.26 \mathrm{ml}, 2.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at RT for 15 min . Then $\mathrm{MeSO}_{2} \mathrm{Cl}(0.15 \mathrm{ml}, 2.0 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred at RT for 6 h . Then the mixture was poured into $10 \% \mathrm{HCl}$ and was extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product purified by flash column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane/ AcOEt, 15:1) to give 739 mg (77% yield) of sulfonate $\mathbf{1 7 A}[0]$ as a colourless solid. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.86(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.46$ (m, $8 \mathrm{H}), 1.50-3.75$ (br m, 10H), 1.53 (quint, $J=7.6 \mathrm{~Hz}$, 2 H), 1.73 (quint, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.58\left(\mathrm{dd}, J_{1}=11.9 \mathrm{~Hz}, J_{2}=14.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.93\left(\mathrm{dd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=14.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.87(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.74\left(\mathrm{dd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}: m / z 574$ $\left(\mathrm{M}^{+}\right), 43(100 \%)$. HRMS: m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{~B}_{10} \mathrm{O}_{4} \mathrm{~S}, 574.4120$; found: 574.4124.

12-(4-Pentyloxyphenyl)-p-carborane-1-acetaldehyde (18A).

Dess-Martin periodinate $(1.817 \mathrm{~g}, 4.27 \mathrm{mmol})$ was added portionwise to a stirred solution of alcohol 9 A $(1.50 \mathrm{~g}, 4.27 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$. The mixture was stirred at RT for 5 h and filtrated through a pad of Celite. The filtrate was concentrated and the crude product was purified by a column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt, 10:1) to give $1.421 \mathrm{~g}(95 \%$ yield $)$ of $\mathbf{1 8 A}$ as a colourless solid
(n-hexane). M.p. ${ }^{61-63}{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.91(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.50-3.75(\mathrm{br} \mathrm{m}$, $10 \mathrm{H}), 1.73$ (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.08 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.37(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0,22.4,28.1,28.8,48.7,68.0,71.8,83.0$, 113.8, 128.0, 128.1, 159.3, 196.7. MS: m/z 348 (M^{+}), 279 (100%). HRMS: m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~B}_{10} \mathrm{O}_{2}$, 348.3093; found 348.3096.

2-[12-(4-Pentyloxyphenyl)-p-carboran-1-yl]-1-(4-

 pentyloxyphenyl)ethanol (19A[1]).To a suspension of $\mathrm{Mg}(63 \mathrm{mg}, 2.62 \mathrm{mmol})$ in anhydrous THF $(0.5 \mathrm{ml})$ was added dropwise a solution of p-bromopentyloxybenzene $(578 \mathrm{mg}$, 2.38 mmol) in anhydrous THF (1 ml) and the mixture was stirred at RT for 1 h . The prepared Grignard reagent was added to a solution of aldehyde 18A $(415 \mathrm{mg}, 1.19 \mathrm{mmol})$ in anhydrous THF $(2 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at RT for 12 h . Then the mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$ and extracted with AcOEt . The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt, $\left.50: 1\right)$ to give 338 mg (55% yield) of alcohol 19A[1], which was recrystallised (n-hexane) to form colourless cubes. M.p. $110-112^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.20-1.50(\mathrm{~m}, 8 \mathrm{H})$, $1.50-3.75$ (br m, 10H), 1.65-1.82 (m, 4H), 1.81 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97\left(\mathrm{dd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=15.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.12\left(\mathrm{dd}, \quad J_{1}=9.2 \mathrm{~Hz}, J_{2}=15.3 \mathrm{~Hz}, \quad 1 \mathrm{H}\right), 3.87(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{dt}$, $\left.J_{1}=2.9 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.66(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 13.98,14.01,22.4,22.5$, 28.15, 28.19, 28.85, 28.94, 47.0, 68.0, 68.1, 72.8, 77.8, 81.9, 113.8, 114.6, 126.9, 128.2, 128.4, 135.3, 158.9, 159.2. MS: $m / z 494\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100 \%\right)$.

Pentyl 4'-pentyloxy-4-biphenylcarboxylate (20B).

A mixture of 4'-hydroxy-4-biphenylcarboxylic acid $(2.50 \mathrm{~g}, 11.67 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(4.03 \mathrm{~g}, 29.2 \mathrm{mmol})$ and 1iodopentane ($3.8 \mathrm{ml}, 29.2 \mathrm{mmol}$) in DMF (30 ml) was stirred at $100^{\circ} \mathrm{C}$ for 24 h . The mixture was poured into ice water and the extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt, gradient from $10 / 1$ to $1 / 1$) to give a colourless solid of pentyl 4'-pentyloxy-4-biphenylcarboxylate (20B, $0.94 \mathrm{~g}, 23 \%$ yield) and a pale yellow solid of pentyl 4 '-hydroxy-4biphenylcarboxylate (21B, $2.41 \mathrm{~g}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR: $\delta 0.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.51(\mathrm{~m}, 4 \mathrm{H})$,
$1.79(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1$ H), 6.94 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) 7.61$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$.

Without further purification the hydroxy ester 21B was converted to 20B by treatment with NaH (1.3 eq) followed by $n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{I}$ (1.3. eq) in dry DMF. The pentyl ester 20B was obtained in a combined yield of 83% of as a colourless solid. M.p. $76{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 3 H), $1.34-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.79$ (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.82 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.01 ($\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.33 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 13.99,14.01,22.4,22.5$, 28.18, 28.21, 28.5, 28.9, 65.1, 68.1, 114.9, 126.4, 128.3, $128.5,130.0,132.2,145.2,159.4,166.6$. Elemental analysis: calculated for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3}, \mathrm{C} 77.93$, H 8.53; found, C 77.93, H 8.41\%.

4-Bromo-4'-pentyloxybiphenyl (24B) (48).

$\mathrm{NaH}(60 \%$ in oil, $2.08 \mathrm{~g}, 52 \mathrm{mmol})$ was added portionwise to a solution of 4-bromo-4'-hydroxybiphenyl $(10.0 \mathrm{~g}, 40 \mathrm{mmol})$ in anhydrous DMF $(100 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min at RT, 1-iodopentane $(6.78 \mathrm{ml}$, 52 mmol) was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 6 h . The mixture was poured into ice water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was recrystallised (hexane) to give 11.76 g (92% yield) of bromide 24B as colourless crystals. M.p. $132^{\circ} \mathrm{C}$ [lit. (48) m.p. $133^{\circ} \mathrm{C}$]. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.94$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), $1.30-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.81$ (quint, $J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.53 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0,22.5,28.2$, 29.0, 68.1, 114.9, 120.7, 127.9, 128.2, 131.7, 132.2, 139.8, 159.0. MS: $m / z 318$ and 320 ($1: 1, \mathrm{M}^{+}$), 248 (100 $\%$). Elemental analysis: calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}, \mathrm{C}$ 63.96, H 6.00; found, C 63.91, H 6.00\%.

4-Iodo-4'-pentyloxybiphenyl (25B).

A solution of bromide $\mathbf{2 4 B}(1.60 \mathrm{~g}, 5.02 \mathrm{mmol})$ in THF (16 ml) was added dropwise to a mixture of Mg ($158 \mathrm{mg}, 6.53 \mathrm{mmol}$) and THF $(1 \mathrm{ml})$ at RT and the mixture was refluxed for 1 h . The reaction mixture was cooled and added to a stirring solution of I_{2} $(828 \mathrm{mg}, 6.53 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at RT for $1 \mathrm{~h}, 10 \%$ aqueous NaHSO_{3} was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane) to give $939 \mathrm{mg}(51 \%$ yield $)$ of
iodide 25B as a colourless solid. M.p. $142-143^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.53(\mathrm{~m}, 4 \mathrm{H})$, 1.81 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.99 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.96 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0,22.5,28.2,28.9,68.1,92.0,114.9,127.9,128.5$, 132.2, 137.7, 140.4, 159.0. MS: m/z 366 (M^{+}), 296 (100 \%). Elemental analysis: calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{IO}, \mathrm{C}$ 55.75, H 5.23; found, C 55.90, H 5.13\%.

Ethyl 4'-pentyloxy-4-biphenylacetate (26B).

The double neck flask was charged sequentially with iodide 25B $(1.00 \mathrm{~g}, \quad 2.73 \mathrm{mmol}), \mathrm{CuI}(206 \mathrm{mg}$, 1.092 mmol), 2-phenylphenol ($370 \mathrm{mg}, 2.19 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.33 \mathrm{~g}, 4.1 \mathrm{mmol})$. The flask was evacuated and backfilled with Ar (3 times). Anhydrous 1,4-dioxane (15 ml) was added followed by diethyl malonate $(0.82 \mathrm{ml}, 5.46 \mathrm{mmol})$ and the reaction mixture was refluxed at $140^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was cooled and filtrated through a pad of Celite. The filtrate was washed with saturate aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ followed by brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product purified by flash column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane/ AcOEt , gradient from $30: 1$ to $10: 1$) to give 0.48 g (54% yield) of ester 26B as a colourless solid. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.32-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.81$ (quint. $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.64(\mathrm{~s}, ~ 2 \mathrm{H}), 3.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.17$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.95$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$.

Acknowledgements

This project was supported in part by Grant-in-Aid for Scientific Research (B) No. 13470468, the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by the NSF grant (DMR-0111657 and DMR0606317).

References

(1) Demus D., In Handbook of Liquid Crystals; Demus D., Goodby J.W., Gray G.W., Spiess H-W., Vill V. (Eds), Wiley-VCH: New York, 1998, Vol. 1, pp. 144-146.
(2) Hall A.W.; Hollingshurst J.; Goodby J.W., In Handbook of Liquid Crystals Research; Collings P.J., Patel J.S. (Eds), Oxford University Press: New York, 1997, pp. 23-25.
(3) Singh S., In Liquid Crystals: Fundamentals; World Scientific: New Jersey, 2002, pp. 101-105.
(4) Knaak L.E.; Rosenberg H.M.; Servé M.P. Mol. Cryst. Liq. Cryst. 1972, 17, 171-185.
(5) Demus D. Z. Chem. 1975, 15, 1-13.
(6) Praefcke K.; Schmidt D.; Heppke G. Chem. Ztg. 1980, 104, 269-271.
(7) Bregadze V.I. Chem. Rev. 1992, 92, 209-223.
(8) Kaszynski P.; Douglass A.G. J. Organomet. Chem. 1999, 581, 28-38.
(9) Czuprynski K.; Kaszynski P. Liq. Cryst. 1999, 26, 775-778.
(10) Douglass A.G.; Czuprynski K.; Mierzwa M.; Kaszynski P. J. Mater. Chem. 1998, 8, 2391-2398.
(11) Januszko A.; Kaszynski P.; Wand M.D.; More K.M.; Pakhomov S.; O'Neill M. J. Mater. Chem. 2004, 14, 1544-1553.
(12) Ringstrand B.; Vroman J.; Jensen D.; Januszko A.; Kaszynski P.; Dziaduszek J.; Drzewinski W. Liq. Cryst. 2005, 32, 1061-1070.
(13) Nagamine T.; Januszko A.; Kaszynski P.; Ohta K.; Endo Y. J. Mater. Chem. 2006, 16, 3836-3843.
(14) Nagamine T.; Januszko A.; Ohta K.; Kaszynski P.; Endo Y. Liq. Cryst. 2005, 32, 985-995.
(15) Januszko A.; Glab K.L.; Kaszynski P.; Patel K.; Lewis R.A.; Mehl G.H.; Wand M.D. J. Mater. Chem. 2006, 16, 3183-3192.
(16) Januszko A.; Kaszynski P.; Drzewinski W. J. Mater. Chem. 2006, 16, 452-461.
(17) Ohta K.; Januszko A.; Kaszynski P.; Nagamine T.; Sasnouski G.; Endo Y. Liq. Cryst. 2004, 31, 671-682.
(18) Piecek W.; Kaufman J.M.; Kaszynski P. Liq. Cryst. 2003, 30, 39-48.
(19) Jasinski M.; Jankowiak A.; Januszko A.; Bremer M.; Pauluth D.; Kaszynski P. Liq. Cryst. 2008, 35, 343-350.
(20) Januszko A.; Glab K.L.; Kaszynski P. Liq. Cryst. 2008, 35, 549-553.
(21) Wadsworth W.S. Jr. Org. React. 1977, 25, 73-253.
(22) Dess D.B.; Martin J.C. J. Org. Chem. 1983, 48, 4155-4156.
(23) Gray G.W.; Hartley J.B.; Jones B. J. Chem. Soc. 1955, 1412-1420.
(24) Hennessy E.J.; Buchwald S.L. Org. Lett. 2002, 4, 269-272.
(25) Mallory F.B.; Butler K.E.; Evans A.C.; Brondyke E.J.; Mallory C.W.; Yang C.; Ellenstein A. J. Am. Chem. Soc. 1997, 119, 2119-2124.
(26) Gray G.W.; Goodby J.W.G. Smectic Liquid Crystals Textures and Structures; Leonard Hill: Philadelphia, PA, 1984.
(27) Demus D.; Richter L. Textures of Liquid Crystals; 2nd ed, VEB: Leipzig, 1980.
(28) Dierking I. Textures of Liquid Crystals; Wiley-VCH: Weinheim, 2003.
(29) Goodby J.W. Liq. Cryst. Ordered Fluids 1984, 4, 175-201.
(30) Gierlotka S.; Przedmojski J.; Pura B. Liq. Cryst. 1988, 3, 1535-1541.
(31) Jones F. Jr.; Ratto J. J. Chem. Soc., Chem. Commun. 1973, 841-842.
(32) Titov V.V.; Kovshev E.I.; Pavluchenko A.I.; Lazareva V.T.; Grebenkin M.F. J. Phys., Paris Suppl. 1975, 36, C1, 387-392.
(33) Vill V. LiqCryst 4.6; LCI: Hamburg, 2005.
(34) Arora S.L.; Fergason J.L.; Taylor T.R. J. Org. Chem. 1970, 35, 4055-4058. Haut S.A.; Schroeder D.C.; Schroeder J.P. J. Org. Chem. 1972, 37, 1425-1428.
(35) Kalyvas V.; McIntyre J.E. Mol. Cryst. Liq. Cryst. 1982, 80, 105-118.
(36) Vora R.A.; Gupta R. Mol. Cryst. Liq. Cryst. 1981, 67, 215-220.
(37) Mori A.; Uno K.; Kubo K.; Kato N.; Takeshita H.; Hirayama K.; Ujiie S. Liq. Cryst. 2004, 31, 285-294; Mori, A.; Hirayama, K.; Kato, N.; Takeshita, H.; Ujiie, S. Chem. Lett. 1997, 509-510.
(38) Kajitani T.; Kohmoto S.; Yamamoto M.; Kishikawa K. J. Mater. Chem. 2004, 14, 3449-3456.
(39) Zakharkin L.I.; Kalinin V.N.; Rys E.G. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1974, 2543-2545.
(40) Geometry optimisations for anilides 31 and their dimers were undertaken at the HF/3-21G(d) level of theory using default convergence limits.
(41) Frisch M.J.; Trucks G.W.; Schlegel H.B.; Scuseria G.E.; Robb M.A.; Cheeseman J.R.; Zakrzewski V.G.; Montgomery J.A. Jr.; Stratmann R.E.; Burant J.C., et al. Gaussian 98, Revision A.9; Gaussian, Inc: Pittsburgh, PA, 1998.
(42) Rowland R.S.; Taylor R. J. Phys. Chem. 1996, 100, 7384-7391.
(43) Bowes K.F.; Glidewell C.; Low J.N.; Skakle J.M.S.; Wardell J.L. Acta Crystallogr. 2003, C59, o1-o3.
(44) Adams H.; Bernad P.L. Jr.; Eggleston D.S.; Haltiwanger R.C.; Harris K.D.M.; Hembury G.A.; Hunter C.A.; Livingstone D.J.; Kariuki B.M.; McCabe J.F. Chem. Commun. 2001, 1500-1501.
(45) Du Plessis M.P.; Modro T.A.; Nassimbeni L.R. J. Org. Chem. 1982, 47, 2313-2318.
(46) Profft E.; Drux R. J. Prakt. Chem. 1956, 3, 274-277.
(47) Tadros W.; Ekladius L.; Sakla A.B. J. Chem. Soc. 1954, 2351-2353.
(48) Goodby J.W.; Pindak R. Mol. Cryst. Liq. Cryst. 1981, 75, 233-247.

[^0]: Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
 This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

 The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

[^1]: *Corresponding author. Email: piotr.kaszynski@vanderbilt.edu

